Multi-objective adaptive large neighborhood search for distributed reentrant permutation flow shop scheduling

نویسندگان

  • Achmad P. Rifai
  • Huu-Tho Nguyen
  • Siti Zawiah Md Dawal
چکیده

Factory management plays an important role in improving the productivity and quality of service in the production process. In particular, the distributed permutation flow shop scheduling problem with multiple factories is considered a priority factor in the factory automation. This study proposes a novel model of the developed distributed scheduling by supplementing the reentrant characteristic into the model of distributed reentrant permutation flow shop (DRPFS) scheduling. This problem is described as a given set of jobs with a number of reentrant layers is processed in the factories, which compromises a set of machines, with the same properties. The aim of the study is to determine the number of factory needs to be used, jobs assignment to certain factory and sequence of job assigned to the factory in order to simultaneously satisfy three objectives of minimizing makespan, total cost and average tardiness. To do this, a novel multi-objective adaptive large neighborhood search (MOALNS) algorithm is developed for finding the near optimal solutions based on the Pareto front. Various destroy and repair operators are presented to balance between intensification and diversification of searching process. The numerical examples of computational experiments are carried out to validate the proposed model. The analytical results on the performance of proposed algorithm are checked and compared with the existing methods to validate the effectiveness and robustness of the proposed potential algorithm in handling the DRPFS problem. © 2015 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-objective Differential Evolution for the Flow shop Scheduling Problem with a Modified Learning Effect

This paper proposes an effective multi-objective differential evolution algorithm (MDES) to solve a permutation flow shop scheduling problem (PFSSP) with modified Dejong's learning effect. The proposed algorithm combines the basic differential evolution (DE) with local search and borrows the selection operator from NSGA-II to improve the general performance.  First the problem is encoded with a...

متن کامل

A General Variable Neighborhood Search Algorithm to Minimize Makespan of the Distributed Permutation Flowshop Scheduling Problem

This paper addresses minimizing the makespan of the distributed permutation flow shop scheduling problem. In this problem, there are several parallel identical factories or flowshops each with series of similar machines. Each job should be allocated to one of the factories and all of the operations of the jobs should be performed in the allocated factory. This problem has recently gained attent...

متن کامل

Fuzzy Multi-objective Permutation Flow Shop Scheduling Problem with Fuzzy Processing Times under Learning and Aging Effects

In industries machine maintenance is used in order to avoid untimely machine fails as well as to improve production effectiveness. This research regards a permutation flow shop scheduling problem with aging and learning effects considering maintenance process. In this study, it is assumed that each machine may be subject to at most one maintenance activity during the planning horizon. The objec...

متن کامل

A Tabu Search Method for a New Bi-Objective Open Shop Scheduling Problem by a Fuzzy Multi-Objective Decision Making Approach (RESEARCH NOTE)

This paper proposes a novel, bi-objective mixed-integer mathematical programming for an open shop scheduling problem (OSSP) that minimizes the mean tardiness and the mean completion time. To obtain the efficient (Pareto-optimal) solutions, a fuzzy multi-objective decision making (fuzzy MODM) approach is applied. By the use of this approach, the related auxiliary single objective formulation can...

متن کامل

A cloud-based simulated annealing algorithm for order acceptance problem with weighted tardiness penalties in permutation flow shop scheduling

Make-to-order is a production strategy in which manufacturing starts only after a customer's order is received; in other words, it is a pull-type supply chain operation since manufacturing is carried out as soon as the demand is confirmed. This paper studies the order acceptance problem with weighted tardiness penalties in permutation flow shop scheduling with MTO production strategy, the objec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2016